

OCR Computer Science AS Level

2.3.1 Algorithms for the Main Data Structures
Advanced Notes

www.pmt.education

Specification:

● Stacks
● Queues

www.pmt.education

Algorithms for the Main Data Structures

Algorithms and data structures go hand in hand. Each data structure has its own
algorithms associated with it, allowing the data to be manipulated in useful ways.

All of the data structures mentioned in these notes are covered in greater detail in the
notes for 1.4.2 Data Structures.

Stacks
Stacks are an example of a first in, last out (FILO) data structure. They are often
implemented as an array and use a single pointer which keeps track of the top of the stack
(called the top pointer). This points to the element which is currently at the top of the stack.

The top pointer is initialised at -1; this is because the first element in the stack is in position
0, and having the top initialised at 0 would suggest there is an element in the stack, when
in fact the stack is empty.

Algorithms for stacks include adding to the stack, removing from the stack and checking
whether the stack is empty/full. These have their own special names , as shown in the table
below.

Operation Name

Check size size()

Check if empty isEmpty()

Return top element (but
don’t remove)

peek()

Add to the stack push(element)

Remove top element
from the stack and
return removed element

pop()

www.pmt.education

size()
Size returns the number of elements on the stack. The pseudocode is as simple as
returning the value of the top pointer plus one (remember that the first element is in
position 0).

size()
return top + 1

isEmpty()
To check whether a stack is empty, we need to check whether the top pointer is less than
0. If it is, then the stack is empty, otherwise there is data in the stack

isEmpty()
if top < 0:

return True
else:

return False
endif

peek()
To return the item at the top of the stack, without removing it , simply return the item at the
position indicated by the top pointer. For these examples, we’ll assume our stack is an
array called A.

Don’t forget to check that the stack has data in it before attempting to return data though,
as an empty stack could cause errors. It’s useful to use the isEmpty function here.

peek()
if isEmpty():

return error
else:

return A[top]
endif

www.pmt.education

push(element)
To add an item to a stack, the new item must be passed as a parameter. Firstly, the top
pointer is updated accordingly. Then the new element can be inserted at the position of the
top pointer.

push(element)
top += 1
A[top] = element

pop()
To remove an item from a stack, the element at the position of the top pointer is recorded
before being removed, and then the top pointer decremented by one before the removed
item is returned. As with peek(), it’s important to check that the stack isn’t empty before
attempting a pop.

pop()
if isEmpty():

return error
else:

toRemove = A[top]
A[top] = “”
top -= 1
return toRemove

endif

Example
What would be the result of the following operations on a 3-element stack?

push(1)
push(5)
push(4)
peek()
pop()
isEmpty()
push(2)
push(3)
pop()
pop()

www.pmt.education

The first three operations push the items 1, 5 and 4 to the stack in that order.

 → 1

→ 5

 1

→ 4

 5

 1

The next operation is a peek. This returns the item at the top of the stack, but doesn’t
change the appearance of the stack. Therefore this operation returns 4 and the stack
remains the same.

Next is pop. This removes the item at the top of the stack, 4, and returns it before the top
pointer moves down one place.

→ 5

 1

Now isEmpty is carried out. The stack is not empty and so False is returned. Next 2 is
pushed onto the stack.

→ 2

 5

 1

Now 3 is pushed onto the stack, but as the stack is full, an error is returned and the stack
stays the same. Now two consecutive pops are carried out, removing 2 and 5 in that order
and outputting the values 2, 5.

→ 5

 1

 → 1

The final state of the stack is shown to the left above. The output from the operations is:

4, 4, False, 2, 5

www.pmt.education

Queues
Queues are a type of first in, first out (FIFO) data structure. Just like stacks, queues are
often represented as arrays. However, unlike stacks, queues make use of two pointers:
front and back. While front holds the position of the first element, back stores the next
available space .

Operations which can be carried out on queues are similar to those associated with
stacks, but be aware - some have different names.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

Alex Rajiv Sam Jayden Charlie

↑ ↑

Front Back

Operation Name

Check size size()

Check if empty isEmpty()

Return front element
(but don’t remove)

peek()

Add to the queue enqueue(element)

Remove front element
from the queue and
return removed element

dequeue()

size()
To work out the size of a queue, simply subtract the value of front from back. If front is at 0
and back is at 5, there are 5 elements in the queue.

size()
return back - front

www.pmt.education

isEmpty()
When a queue is empty, front and back point to the same position. To check whether a
queue is empty, just check whether the two pointers hold the same value .

isEmpty()
if front == back:

return True
else:

return False
endif

peek()
Just as with a stack, peek returns the element at the front of the queue without removing it .

peek()
return A[front]

enqueue(element)
To add an element to a queue, the element is placed in the position of the back pointer
and then back is incremented by one.

enqueue(element)
A[back] = element
back += 1

dequeue()
Items are removed from a queue from the position of the front pointer . Just as with stacks,
it’s important to check that the queue isn’t empty before trying to dequeue an element.

dequeue()
if isEmpty():

return error
else:

toDequeue = A[front]
A[front] = “”
front += 1
return toDequeue

www.pmt.education

Example

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

Alex Rajiv Sam Jayden Charlie

↑ ↑

Front Back

What would be the result of the following operations on the queue above?

dequeue()
enqueue(“Julia”)
size()
peek()
size()
dequeue()
isEmpty()

The first operation is dequeue, which removes Alex from the front of the queue and
moves the front pointer to Rajiv. Alex is returned.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Rajiv Sam Jayden Charlie

 ↑ ↑

 Front Back

Next, Julia is enqueued. The name is added at the position of the back pointer and the
back pointer is moved to position 6.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Rajiv Sam Jayden Charlie Julia

 ↑ ↑

 Front Back

www.pmt.education

Now we check the size of the queue. 6-1 = 5 and so 5 is returned. The next operation is
peek which returns the item at the front of the queue, Rajiv , but does not change the
queue otherwise.
The next operation is size, and because the queue hasn’t changed as a result of the
peek operation, 5 is returned again.

Next a dequeue is performed. Rajiv is returned, removed from the queue and the front
pointer moved to Sam.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Sam Jayden Charlie Julia

 ↑ ↑

 Front Back
Finally, the isEmpty command is performed. Because the values of front and back are
not the same, False is returned.

The output of the operations is therefore:

Alex, 5, Rajiv, 5, Rajiv, False

www.pmt.education

